ON FUNCTIONAL EQUATIONS IN GAMES OF ENCOUNTER AT A PRESCRIBED INSTANT*

S.V. CHISTIAKOV

Functional operators, simpler than in /1-3/, are determined in connection with games of encounter at a prescribed instant. These operators or their analogs can be used to obtain many of the fundamental results in /1-3/, in particular, iteration methods can be constructed, converging to the game's value function. As one more illustration of the capabilities of the method developed in /1-3/, the operators determined below are used to give a new proof of the well-known result /4/ on the identification of the game's value function by means of the so-called main equation.

Let the dynamics in a game of encounter at a prescribed instant be described by the system

 $\begin{aligned} \mathbf{x}^{i} &= f\left(t, \, \mathbf{x}, \, u, \, v\right); \, \mathbf{x} \in \mathbb{R}^{n} \\ \mathbf{u} &\in P \in \operatorname{Comp} \mathbb{R}^{k}, \ v \in Q \in \operatorname{Comp} \mathbb{R}^{m} \end{aligned} \tag{1}$

Concerning the vector-valued function $f(\cdot)$ we assume the fulfillment of the following conditions: 1) $f(\cdot)$ is continuous on $(-\infty, T] \times \mathbb{R}^n \times \mathbb{P} \times \mathbb{Q}$ and satisfies a local Lipschitz condition in x; 2) there exists $\lambda > 0$ such that $||f(t, x, u, v)|| \leq \lambda (1 + ||x||)$ for all $t \in (-\infty, T]$, $x \in \mathbb{R}^n$, $u \in \mathbb{P}$, $v \in \mathbb{Q}$; 3) the equality

$$\max_{v \in \mathbf{Q}} \min_{u \in \mathbf{P}} \langle l, f(t, x, u, v) \rangle = \min_{u \in \mathbf{P}} \max_{v \in \mathbf{Q}} \langle l, f(t, x, u, v) \rangle$$

is valid for any $l \in R^n, t \in (-\infty, T]$ and $x \in R^n$. We define the operators

$$\Phi_{-}, \Phi_{+}: C\left((-\infty, T] \times R^{n}\right) \twoheadrightarrow C\left((-\infty, T] \times R^{n}\right)$$

For any function $w(\cdot)$ continuous on $(-\infty, T] \times R^n$ and for any $t^{\circ} \in (-\infty, T], x^{\circ} \in R^n$

$$\begin{array}{l} \Phi_{-}\circ w\left(t^{o},x^{o}\right)=\max_{t\in[t^{o},T]}\max_{v\in Q}\min_{u(\cdot)} w\left(t,x\left(t,t^{o},x^{o},u\left(\cdot\right),v\right)\right)\\ \Phi_{+}\circ w\left(t^{o},x^{o}\right)=\min_{\substack{t\in[t^{o},T]\\ v\in[T,T]}}\min_{u\in P}\sup_{u(\cdot)} w\left(t,x\left(t,t^{o},x^{o},u,v\left(\cdot\right)\right)\right) \end{array}$$

where the operation inf (respectively, sup) ranges over all piecewise-constant functions $u:[t^o, T] \rightarrow P(v:[t^o, T] \rightarrow Q)$, while the function $x(\cdot, t^o, x^o, u(\cdot), v)(x(\cdot, t^o, x^o, u, v(\cdot)))$ is the solution of Eq.(1) on interval $[t^o, T]$, with the initial condition $x(t^o) = x^o$, under the piecewise-constant control $u(\cdot)(v(\cdot))$ and under the constant control v(u) on the interval $[t^o, T]$. As was done in /1,2/, it can be shown that the definitions of operators Φ_- and Φ_+ are well posed, and, in particular, they indeed map $C((-\infty, T] \times R^n)$ into itself. In addition, as in /1,2/, the following lemma can be established.

Lemma. The inequalities $\Phi_{-} \circ w(\cdot) \ge w(\cdot)$ and $\Phi_{+} \circ w(\cdot) \le w(\cdot)$ are valid for any function $w(\cdot) \in C((-\infty, T] \times R^n)$.

Theorem 1. Let the function $w^{\circ}(\cdot) \in C((-\infty, T] \times \mathbb{R}^n)$ and be continuously differentiable in the domain $(-\infty, T) \times \mathbb{R}^n$. Then assertions 1° and 2° are equipotent:

1°. In domain $(-\infty, T) \times R^n$ the function $w^{\circ}(\cdot)$ satisfies the equation

$$\max_{\boldsymbol{v} \in \boldsymbol{Q}} \min_{\boldsymbol{u} \in \boldsymbol{P}} \left\langle \frac{\partial \boldsymbol{w}}{\partial \boldsymbol{x}}(t, \boldsymbol{x}), f(t, \boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}) \right\rangle + \frac{\partial \boldsymbol{w}}{\partial t}(t, \boldsymbol{x}) = 0$$
(2)

2[°]. The function $w^{\circ}(\cdot)$ is the common fixed point of operators Φ_{-} and Φ_{+} .

Proof. Let us show that if assertion 1° is valid, then, for example, $\Phi_{+} \circ w^{\circ}(\cdot) = w^{\circ}(\cdot)$. To do this, with due regard to the Lemma, it suffices to show that $\Phi_{+} \circ w^{\circ}(\cdot) \ge w^{\circ}(\cdot)$. The latter inequality is automatically fulfilled if

^{*}Prikl.Matem.Mekhan.,46,No.5,874-877,1982

$$\sup_{\boldsymbol{v}(\cdot)} w^{\circ}(t, x(t, t^{\circ}, x^{\circ}, u, v(\cdot))) \geqslant w^{\circ}(t^{\circ}, x^{\circ})$$
(3)

for any $t^{o} \in (-\infty, T]$, $x^{o} \in \mathbb{R}^{n}$, $u \in P$ and $t \in [t^{o}, T]$. Inequality (3) is trivial when $t = t^{o}$; therefore,let $t^{o} < t \le T$. Since function $w^{o}(\cdot)$ is of class C^{1} , (3) is equivalent to the inequality

$$\sup_{\mathbf{v}(\cdot)} \int_{t^{\circ}}^{t} h(\mathbf{\tau}, v(\cdot)) d\mathbf{\tau} \ge 0; \quad h(\mathbf{\tau}, v(\cdot)) = \left\langle \frac{\partial w^{\circ}}{\partial x}(\mathbf{\tau}, x(\mathbf{\tau}, v(\cdot))), f(\mathbf{\tau}, x(\mathbf{\tau}, v(\cdot)), u, v(\mathbf{\tau})) \right\rangle +$$
(4)
$$\frac{\partial w^{\circ}}{\partial t}(\mathbf{\tau}, x(\mathbf{\tau}, v(\cdot))), x(\mathbf{\tau}, v(\cdot)) = x(\mathbf{\tau}, t^{\circ}, x^{\circ}, u, v(\cdot))$$

(here the arbitrary $t^{\circ} \in (-\infty, T)$, $t^{\circ} \in \mathbb{R}^{n}$, $u \in P$ and $t \in (t^{\circ}, T]$) are reconed fixed). By assumption, function $w^{\circ}(\cdot)$ satisfies Eq.(2) in the domain $(-\infty, T) \times \mathbb{R}^{n}$; therefore, for any $\delta = \delta(k) = (t - t^{\circ})/k$ we can find a piecewise-constant control $v_{\delta}(\cdot) (v_{\delta}(\tau) = v_{i}$ for $\tau \in [t^{\circ} + (i - 1)\delta, t^{\circ} + i\delta)$, $i = 1, 2, \ldots, k - 1$ and $v_{\delta}(\tau) = v_{k}$ for $\tau \in [t - \delta, i]$ such that

$$h(i^{\circ} + (i - 1)\delta, v_{\Lambda}(\cdot)) \ge 0, \ i = 1, 2, \dots, k$$
(5)

In view of the continuity of the functions $\partial w^{\circ}(\cdot)/\partial x$, $\partial w^{\circ}(\cdot)/\partial t$ and $f(\cdot)$ in their domains, as well as in view of the uniform boundedness and equicontinuity of the set of solutions x (τ , t° , x° , u, $v(\cdot)$), $\tau \in [t^{\circ}, t]$, of system (1), corresponding to all possible piecewise-constant controls $v: [t^{\circ}, t] \rightarrow Q$, it follows from (5) that for any $\varepsilon > 0$ we can find such $\delta = \delta(k)$ and the corresponding control $v_{\delta}(\cdot)$ which will ensure the fulfillment of the inequality

$$h(\tau, v_{A}(\cdot)) \ge -\varepsilon/(t-t^{\circ}), \forall \tau \in [t^{\circ}, t]$$

Hence, with due regard to the definition of function $h(\tau, v_{\delta}(\cdot)), \tau \in [t^{\circ}, t]$, and to the arbitrariness of $\epsilon > 0$, we have (4). Thus, from the validity of assertion 1° it follows that $\Phi_{+} \circ w^{\circ}(\cdot) = w^{\circ}(\cdot)$. Analogously, with due regard to assumption 3) on $f(\cdot)$, it can be established that from the validity of assertion 1° follows $\Phi_{-} \circ w^{\circ}(\cdot) = w^{\circ}(\cdot)$. We take the implication 1° \Rightarrow 2° as proved.

Let us now prove that $2^{\circ} \Rightarrow 1^{\circ}$. We assume the contrary. For example, let assertion 2° be valid, but let there exist $t^{\circ} \in (-\infty, T)$ and $x^{\circ} \in \mathbb{R}^{n}$ such that the expression on the left-hand side of (2) is greater than zero. Then, because the functions $\partial w^{\circ}(\cdot)/\partial x$, $\partial w^{\circ}(\cdot)/\partial t$ and $f(\cdot)$ are continuous, we can find neighborhoods $S(t^{\circ}) \subset (-\infty, T)$ and $S(x^{\circ}) \subset \mathbb{R}^{n}$ of points t° and x° , as well as a control $v^{\circ} \in Q$, such that for any $u \in P, t \in S(t^{\circ})$ and $x \in S(x^{\circ})$

$$\left\langle \frac{\partial w^{\circ}}{\partial x}(t, x), f(t, x, u, v^{\circ}) \right\rangle + \frac{\partial w^{\circ}}{\partial t}(t, x) \ge \alpha > 0$$

Since the set of solutions $x(\tau, t^o, x^o, u(\cdot), v^o), \tau \in [t^o, T]$, of system (1), corresponding to all possible piecewise-constant controls $u: [t^o, T] \to P$, is equicontinuous, we can find $\vartheta \in S(t^o) (t^o < \vartheta \leq T)$ such that

$$\begin{split} &\inf_{\boldsymbol{u}(\cdot)} \int_{\boldsymbol{v}^{\circ}}^{\boldsymbol{\vartheta}} h\left(\boldsymbol{\tau}, \boldsymbol{u}\left(\cdot\right)\right) d\boldsymbol{\tau} \geqslant \alpha > 0; \quad h\left(\boldsymbol{\tau}, \boldsymbol{u}\left(\cdot\right)\right) = \\ & \left\langle \frac{\partial \boldsymbol{w}^{\circ}}{\partial \boldsymbol{x}}\left(\boldsymbol{\tau}, \boldsymbol{x}\left(\boldsymbol{\tau}, \boldsymbol{u}\left(\cdot\right)\right)\right), f\left(\boldsymbol{\tau}, \boldsymbol{x}\left(\boldsymbol{\tau}, \boldsymbol{u}\left(\cdot\right)\right), \boldsymbol{u}\left(\boldsymbol{\tau}\right), \boldsymbol{v}^{\circ}\right) \right\rangle + \\ & \frac{\partial \boldsymbol{w}^{\circ}}{\partial \boldsymbol{t}}\left(\boldsymbol{\tau}, \boldsymbol{x}\left(\boldsymbol{\tau}, \boldsymbol{u}\left(\cdot\right)\right)\right), \ \boldsymbol{x}\left(\boldsymbol{\tau}, \boldsymbol{u}\left(\cdot\right)\right) = \boldsymbol{x}\left(\boldsymbol{\tau}, \boldsymbol{t}^{\circ}, \boldsymbol{x}^{\circ}, \boldsymbol{u}\left(\cdot\right), \boldsymbol{v}^{\circ}\right) \end{split}$$

From this inequality, in its own turn, follows the inequality $\Phi_- \circ u^\circ(t^\circ, x^\circ) > w^\circ(t^\circ, x^\circ)$ which contradicts the fact that $w^\circ(\cdot)$ is a fixed point of operator Φ_- . Analogously, assuming that assertion 2° is valid and that the expression on the left-hand side of (2) is less than zero, we arrive at a contradiction with the fact that $w^\circ(\cdot)$ is a fixed point of operator Φ_+ . The theorem has been proved.

We now assume that in the game of encounter at a prescribed instant, described by system (1), the gain of the maximizing player, who has the choice of $v \in Q$ at his disposal, and, respectively, the loss of the minimizing player, who has the choice of $u \in P$ at his disposal, are determined by the quantity

$$H(\boldsymbol{x}(T)), \ H(\cdot) \in C(\mathbb{R}^n) \tag{6}$$

Then, the next theorem can be established by analogy with /3/.

Theorem 2. Let the function $u^{\circ}(\cdot) \in C$ (($-\infty, T$) $\times R^{n}$). Then the assertions 1[°] and 2[°] are

equipotent: 1° . Function $w^{\circ}(\cdot)$ is the value function of game (1), (6). 2° . Function $w^{\circ}(\cdot)$ satisfies the boundary condition

$$w^{\circ}(T, x) = H(x)$$

and is a common fixed point of operators $\Phi_{\!\scriptscriptstyle -}$ and $\Phi_{\!\scriptscriptstyle +}.$

From Theorems 1 and 2 follows the well-known result /4/ on the identification of the value function by means of the main equation (2).

Theorem 3. Let the function $w^{\circ}(\cdot) \in C((-\infty, T] \times R^n)$ and be continuously differentiable in the domain $(-\infty, T) \times R^n$. Then the following assertions 1° and 2° are equipotent:

1°. Function $w^{\circ}(\cdot)$ is the value function of game (1), (6). 2°. Function $w^{\circ}(\cdot)$ satisfies Eq.(2) in the domain $(-\infty, T) \times \mathbb{R}^n$ and satisfies boundary condition (7).

REFERENCES

- CHENTSOV A.G., On a game problem of encounter at a prescribed instant. Mat. Sb., Vol.99, No.3, 1976.
- 2. CHISTIAKOV S.V. and PETROSIAN L.A., On one approach to solving a pursuit games. Vestn. Leningrad. Gos. Univ., No. F_{r}^{λ} 1977.
- 3. CHISTIAKOV S.V., On solving pursuit game problems. PMM Vol.41, No.5, 1977.
- 4. ISAACS R., Differential Games. New York, J. Wiley and Sons. Inc., 1965.

Translated by N.H.C.

......

706

(7)